

SPECIAL NOTE

READ THIS ENTIRE BOOKLET

BOONE CABLE WORKS & ELECTRONICS, INC. 1773-219TH LANE - P.O. BOX 369 BOONE, IOWA 50036 USA

BEFORE PROCEEDING WITH THE INSTALLATION PHONE (515) 432-2010 FAX (515) 432-5262 TOLL FREE (800)-265-2010

Contents

1	INTRODUCTION	3
2	DESCRIPTION	
3	CONCEPTS	5
	3.1 Switches & Switching systems.	
	3.2 RS 485 data link	5
4	Switch Locations	6
5	Installation	6
6	CONNECTIONS	7
	6.1 DC Power	7
	6.2 RS 485 Data Link	
7	Wiring diagrams	8
	7.1 COLOR CODES	8
	7.1.1 Cable Select & Switch Select	
	7.2 Thermocouple Cable	8
8	KTX System Theory & Troubleshooting	14
	8.1 K1 Cable Select Board	15
	8.1.1 Circuit Theory	. 15
	8.1.2 Trouble Shooting the K1 Board	. 15
	8.1.3 K8X Control Board	
	8.1.4 Circuit Theory	
	8.2 Trouble Shooting the K8X Board	15

1 INTRODUCTION

In general, all Grain Temperature Monitoring systems perform the process of data access, which reads data from a device and returns it to another device that requested it. More specifically, the data is requested, and then returned to the requesting device to be read. Typically, there will be hundreds or even thousands of sensing points spread over a significant distance. It is a complicated and tedious process to cope with such distances and the great number of points.

The KTX System simplifies this problem by integrating the measurement and switching of a small group of sensing points. It forms a system of independent switches, which measure and sequence through all the sources of the signals.

Figure 1. KTX System, Pre-Installation

2 DESCRIPTION

The KTX System consists of a KT Switch (KTSW), a K8X Control board, and several K1 Cable Select boards, depending on how many cables are being monitored. The KT Switch is a compact weatherproof enclosure divided into two compartments (refer to Figure 1). The bottom compartment is dedicated to wire splice connections. All wires from outside the box enter through this Splice Compartment. Electrical Conduit is attached here. The top compartment is sealed from moisture and dust. It is set apart to protect electronic components that are used for the purpose of switching signals. Access to the interior is provided by a hinged door with secure latches.

The sealed, top Electronics Compartment is occupied by a cage frame that holds the Relay Switching Boards in slots. All boards plug into a back-plane board that inter-connects all boards. The KTX System has only one K8X Control Board, which is always in the first position closest to the hinge. The number of K1 Cable Select Boards ranges from 1 to 8 to scale the system to the number of Temperature Cables. Each K1 board switches the signals of 1 to 3 cables.

The main function of the KTX System is to select one Temperature Cable and measure the thermocouple signals of the selected cable. The measurement is then sent through the RS 485 data link.

KT Switch (KTSW) specifications:

Dimensions=	17" (432mm) Height
	16" (406mm) Width
	8.25" (210mm) Depth
Enclosure =	NEMA 4 or 4X Watertight (intended for extremely wet or corrosive
	environments)
Input Power =	12 VDC, 6W
TC Type =	Type T (Copper Constantan)
Size=	KTX-12 (1-12 cables)
	KTX-24 (1-24 cables)

- 1.1. The KTX System easily adapts to most existing temperature systems for add-on or renovation.
- 1.2. Relay Switching Boards plug-into slotted cage rack for ease of troubleshooting and repair.
- 1.3. The standard enclosure is made from heavy gauge steel with baked enamel finish.
- 1.4. An optional 304 Stainless Steel 4X enclosure is available by special order.
- 1.5. The KTSW enclosure has an isolated splice compartment from the electronics compartment, sealed with an epoxy barrier to ensure that the switch remains in a clean, dust and moisture free environment.
- 1.6. Enclosure top has drip-shield / rain hood protecting door gasket.
- 1.7. All the relay contacts and the board edge connectors are gold for reliable low-level switching.
- 1.8. Edge connections of the Relay Switching Boards are bifurcated (split into two parts) and have a positive lock connection to ensure excellent contact even in high vibration conditions.

3 CONCEPTS

The following general discussion helps to better understand what is happening in the use of the KTX System.

3.1 Switches & Switching systems.

Switches are electromechanical devices that control routing and operation of a signal path. Switching is a method that uses temporary connections, rather than permanent connections, to route information between Sensing Points and the Measuring Device. Even though a KTSW Switch is internally made up of several Relay Switching Boards each having many electromechanical relays, it is just referred to as a single device.

Electromechanical relay-type switching systems operate on the premise that all paths are open until one path is directed to connect. A command to connect is called **Selection**. When internal control relays are open, all **Sensing Points** are isolated. Thus, there is no way to turn on another Switch or Cable to give a false reading.

3.2 RS 485 data link

A RS 485 data link is used to transmit and receive data over a single twisted pair and can span relatively large distances (up to 4,000 feet (1,200 m)). It enables communication between the KTX System and a wired Gateway (Digi Connect EZ) with 2 or 4 communication ports.

04/18/2024

4 Switch Locations

Lead-wire, conduit, and electronic hardware can be kept to a minimum by carefully distributing switching devices around the facility in strategic remote locations. These locations often include the roofs of tanks and interiors of head houses, see Figure 2. Often groups of cables near each other have their leadwire conveniently routed to a single point. Where they come relatively close is a good place to locate the KTX System. A KTX System measures the signals of the cables connected to it, not all the cables in the facility. Note: **Any power or communication lines needs to be run through conduit**.

Figure 2. KTX System Location

5 Installation

The KTX System is mounted using its External Mounting Brackets (See Figure 1). The installer should check the system drawings and determine the proper location of the KTX System. It should be easily accessible and free from obstruction. A fully loaded KTX system consists of one K8X Board and eight K1 Boards (full mux) and can handle up to 24 cables. A half loaded KTX System consists of one K8X Board and four K1 Boards (half mux) and can handle up to 12 cables. These boards and their capabilities will be discussed in detail later. Mount the RPX 12V DC Power Supply near the KTX System. Keep 110V AC separated from the 12V DC, communication, and ground. Make sure the ground from the RS485 communication is connected either at the KT Switch (KTSW) or to the common of the Power Supply.

6 CONNECTIONS

6.1 DC Power

Nominally +12 Volt Direct Current Power comes from the RPX Power Supply. Run the power from the supply to the KTX System. (See figure 3)

- 12 Volt SUPPLY, RED insulation, is the positive conductor.
- RETURN, BLACK insulation, is the negative conductor, ground this to earth to avoid AC voltage "bleed-over" to communication line.

6.2 RS 485 Data Link

Use a Shielded twisted pair cable (CAT5 2 pair), or a designated shielded RS485 communication cable to connect the Gateway to the KTX System. (See figure 3)

- Solid Orange/Solid Green to A, BLACK insulation, CTL A
- White-Orange/White-Green to B, BLUE insulation, CTL B
- Brown to 18 AWG Common, BLACK insulation, COM (-) or Earth Ground

Figure 3. KTX System & Wired Gateway (Digi Connect EZ) Complete Setup

7 Wiring diagrams

The following sections will feature the more practical aspects and possibilities that may be encountered when installing the KTX System. In any Grain Temperature Monitoring System employing KTX Systems, there will be variations in the number of temperature cables attached to each Remote. This part of the instructions will focus more on the most used systems and using the color codes of wires to make the connections easier.

7.1 COLOR CODES

7.1.1 Cable Select & Switch Select

Cable Select A and B are used for RS485 communication. All other select lines (C, D, and E) are not used and should be left unconnected.

Table 1 describes how insulation colors of the Control Bus cable are organized.

	Logic	Insulation Color Code	GROUP (Constantan Insulation Color)		
	А	Black	White		
	В	Blue	White		
Cable Select	С	Green	White		
	D	Red	White		
	Е	Yellow	White		

Table 1. Cable Select Color Codes

7.2 Thermocouple Cable

TC №	Leadwire Insulation Color Code	GROUP (Constantan Insulation Color)			
1	Black	White			
2	Blue	White			
3	Green	White			
4	Red	White			
5	Yellow	White			
6	Clear	White			
7	Black	Brown			
8	Blue	Brown			
9	Green	Brown			
10	Red	Brown			
11	Yellow	Brown			
12	Clear	Brown			
13	Black	Orange			
14	Blue	Orange			
15	Green	Orange			
16	Red	Orange			
17	Yellow	Orange			
18	Clear	Orange			

P.O. BOX 369 1773-219th LANE BOONE, IOWA 50036 USA (515)432-2010 (800) 265-2010 FAX (515) 432-5262 . ز DATE: 12-8-94 CABLE WORKS & ELECTRONICS, INC TYP. 6 T/C LEADWIRE FROM CABLE 180110 Ь TYPICAL BIN NONE DWN. BY: #6 # DWN. NO. Ц μ SCALE: WIRING OF 18 TC KT SWITCH TO 6 TC CABLE WHITE GROUP BLACK BLUE GREEN CLEAR NOT USED NOT USED RED 1) SPLICE WIRES COLOR TO COLOR USE LINE B GREASE FILLED CRIMPS. 2) THE WHITE, BROWN AND ORANGE WIRES ARE CONSTANTAN AND THE REMAINING WIRES COPPER. TC #4 TC #5 TC #3 TC _ #6 ŧ TITLE: REF. ORANGE GROUP BROWN GROUP WHITE GROUP YELLOW GREEN RED YELLOW CLEAR RED YELLOW GREEN CLEAR BLACK BLACK GREEN CLEAR BLACK BLUE BLUE RED NOTE: FROM KT SWITCH (KTSW) SPLICE COMPARTMENT KTX SYSTEM LEADWIRE LABELED 8 T/C LEADWIRE FROM 1 TO 24. R

Figure 5. Wiring of an 18-TC KT Switch (KTSW) to a 6-TC Cable

Figure 6. Wiring of an 18-TC KT Switch (KTSW) To Three 6-TC Cables (6-TC Special)

Figure 7. Wiring of an 18-TC KT Switch (KTSW) to a 12-TC Cable

P.O. BOX 369 1773-219th LANE BOONE, IOWA 50036 USA (515)432-2010 (800) 265-2010 FAX (515) 432-5262 DATE: 12-12-94 CABLE WORKS & ELECTRONICS, INC. 180113 LL S TYPICAL BIN NONE #18 #1 DWN. BY: Ч μ TYP. 18 T/C LEADWIRE DWN. NO. SCALE: FROM CABLE CABLE 1 Y U WIRING OF 18 K SWITCH TO 18 1 1) SPLICE WIRES COLOR TO COLOR USE LINE B GREASE FILLED CRIMPS. ORANGE GROUP BROWN GROUP THE WHITE, BROWN AND ORANGE WIRES ARE CONSTANTAN AND THE REMAINING WIRES COPPER. WHITE GROUP GREEN RED YELLOW CLEAR GREEN RED YELLOW CLEAR RED YELLOW CLEAR BLUE BLACK BLACK BLUE GREEN BLUE TITLE: REF. TC #9 TC #10 TC #11 #13 #14 #15 #16 #18 TC #3 TC #4 TC #6 TC #6 TC #7 TC #8 #12 ## ပ 22 \Box μ С Ц <u>ں</u> P Ц $_{\rm O}$ ORANGE GROUP BROWN GROUP WHITE GROUP GREEN RED YELLOW CLEAR GREEN RED YELLOW CLEAR RED YELLOW CLEAR BLACK BLUE BLACK BLACK BLUE GREEN 5 BLUE NOTE: $\langle \rangle$ KTX SYSTEM 18 T/C LEADWIRE FROM KT SWITCH (KTSW) SPLICE COMPARTMENT LEADWIRE LABELED FROM 1 TO 24. Ľ

Figure 8. Wiring of an 18-TC KT Switch (KTSW) to an 18-TC Cable

04/18/2024

Figure 9. Wiring of a 21-TC KT Switch (KTSW) to a 21-TC Cable

8 KTX System Theory & Troubleshooting

By putting the cable relays onto plug in boards you allow flexibility in sizing the system to the individual location requirements.

Figure 10. KTX System with a KT Switch (KTSW), 1 K8X board, and 8 K1 boards

8.1 K1 Cable Select Board

8.1.1 Circuit Theory

Each K1 board contains switching that can select one of three cables. The selection of an individual cable is identical for all three. The operation of cable A will be explained as being typical of all three.

The K8X board has energized cable A. Nominally 12 volts is applied to the coils of the bottom row of relays K1 to K11. When the relays are actuated, cable A is routed into the K8X board, through the eleven relays. The K8X board then must select one of the 21 TC's and measure the temperature for each TC.

The actual voltage across the relays can be read at test points A, B and C (right side of LED's). This voltage should be between 11 and 14 volts for the relays to operate accurately.

8.1.2 Trouble Shooting the K1 Board

One problem that may occur on the boards is an open TC. Swap the K1 board with another one to determine if the K1 board is at fault.

Red Light Emitting Diodes give easy visual indication of which cable has been activated. In some cases, the LED may be burnt out but the cable still activated properly. This problem can be checked by measuring test points A, B and C located on top of the board. Send the faulty board in for repair or replacement.

Contact Rolfes@Boone at 1-800-265-2010

8.1.3 K8X Control Board

8.1.4 Circuit Theory

This board is designed to communicate using the RS485 data link. The K8X board has a microcontroller, a digital to analog converter, thermocouple select logic, and relay drivers. The relay driver selects one of the 24 cables on the appropriate K1 board. The thermocouple logic selects one thermocouple and the analog to digital converter measures the thermocouple voltage. The microcontroller coordinates all devices and communicates the results back to the host computer.

8.2 Trouble Shooting the K8X Board

One (or two) Red Light Emitting Diode gives easy visual indication if the KTX System has power applied. The other red LED blinks when a read is in progress. If the K8X board is operating improperly, switch it with another one to determine if the K8X board is faulty. Send the faulty board in for repair or replacement. Contact Rolfes@Boone at 1-800-265-2010